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Grantham, Mayo, Van Otterloo and Company LLC (GMO)
uses mixed-integer-programming (MIP) methods to construct
portfolios that are close (in terms of sector and security expo-
sure) to target portfolios, have the same liquidity, turnover,
and expected return as the target portfolios, control frictional
costs, and do so with fewer distinct stocks and with fewer
transactions. It also applies MIP methods to portfolios consist-
ing of several subportfolios. It uses the MIP approach to con-
struct 11 quantitatively managed portfolios representing over
$8 billion in assets. The benefits from this implementation in-
clude (1) keeping the existing client business; (2) making possi-
ble important new growth opportunities; (3) reducing the
number of stock names by an average 40 to 60 percent; (4) re-
ducing the annual cost of trading the portfolios by at least $4
million by reducing the number of trading tickets written by
75 to 85 percent; (5) improving the trading process; and (6) im-
proving performance in simulation in a US fund consisting of
growth stocks with small market capitalization.
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Since the seminal work of Markowitz
[1959], portfolio managers have rou-

tinely used quadratic-programming meth-
ods to construct large-scale portfolios. In
the classical theory of portfolio optimiza-
tion, portfolio managers select the fraction
of wealth w(i) invested in stock i to mini-
mize the risk of the portfolio, measured by
the variability of the return, which is a
quadratic function of the decision vari-
ables, subject to linear constraints (one of
the constraints is typically the requirement
that the expected return of the portfolio is
at least a certain target). This approach
takes into account nicely the trade-off
between risk and return.

GMO has over $26 billion in
assets under management.

In the practice of portfolio construction,
however, there are complications that the
classical theory does not address. In par-
ticular, it is quite common for the number
of different stocks (names) in the portfolio
to be very large. Moreover, in the process
of rebalancing the portfolio, the number of
transactions (trading tickets) can also be
large. The combination of a large number
of names and a large number of tickets in-
creases the costs of trading because both
custodial fees and transaction costs in-
crease. It is therefore desirable to construct
portfolios that minimize the number of
names in the portfolio and the number of
tickets.

We developed and implemented a
method in the investment firm Grantham,
Mayo, Van Otterloo and Company LLC
(GMO) that uses mixed-integer-
programming methods to construct a port-

folio that is close (in terms of sector and
security exposure) to a target portfolio,
has the same liquidity, turnover, and ex-
pected return as the target portfolio, con-
trols frictional costs, and does so with
fewer names and fewer tickets. Although
the use of quadratic-programming meth-
ods in the construction of portfolios is well
documented in the academic literature and
they are widely used in practice, we are
not aware of any use of mixed-integer-
programming methods in the construction
of portfolios in practice. Moreover, to the
best of our knowledge, the problem we
addressed has not been described previ-
ously in the academic literature.
Background Information

Grantham, Mayo, Van Otterloo and
Company LLC (GMO), founded in 1977, is
an investment-management firm that has
over $26 billion in assets under manage-
ment and has over 170 employees world-
wide. Its clients consist of pension funds,
educational endowments, foundations,
and a few large international organiza-
tions. The firm offers a wide range of mu-
tual funds (both equity and fixed-income
funds) in the US and international
markets.

Over the last decade, the most rapidly
growing area of the firm has been the
quantitative investment group. This group
uses computer systems to design, imple-
ment, and trade stock-and-bond portfolios
for large institutional clients. The firm be-
gan its quantitative effort in 1984 to pro-
vide investment services to clients in addi-
tion to those that the traditional
investment areas of the firm could pro-
vide. The successful traditional investment
groups, which depend on a small group of
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professionals to research investment ideas,
quickly reached capacity limits for assets
under management and have had little or
no ability to accept new client funds since
1984. A quantitative-investment process,
with its ability to analyze thousands of se-
curities using a variety of investment tech-
niques and to rigorously control trading
costs, can have a much larger capacity
ceiling. The quantitative-investment pro-
cess at GMO makes extensive use of statis-
tical, simulation, and optimization meth-
odologies to meet return targets of clients
with controlled risk in a large capacity
format.

Increasing diversification into
nonvalue-based subportfolios
was producing composite
portfolios that contained 1,000
to 1,500 different securities.

By 1996, the quantitative group had $15
billion in assets, with a sophisticated
institutional-client base that included lead-
ing investment institutions, such as the
World Bank, the International Monetary
Fund, GTE, IBM, Harvard, Yale, and
Princeton. The group had offices in Bos-
ton, San Francisco, London, and Sydney,
managing money in every stock-and-bond
market in the world. A record of above
average and consistent investment returns
had earned the confidence of a large num-
ber of institutions despite widespread dis-
comfort with quantitative-investment tech-
niques in general. In 1996, GMO received
the “Most Innovative Award” from Global
Investor, an organization that ranks in-
vestment managers, for the most innova-

tive investment manager of the year.
It was also clear in 1996, however, that a

number of serious threats were developing
to the continued success of the largest part
of the quantitative group, the division
managing stocks. The principal investment
strategy of the quantitative stock division
is a style known as value investing, which
compares the prices of individual securi-
ties, of groups of securities, such as indus-
tries, and of entire country stock markets
to theoretical values derived from eco-
nomic and statistical models. Value invest-
ing was performing below expectations in
many markets around the world, and as a
consequence, the investment returns of
some of the largest and most important
quantitative funds were trending down.

The response in the quantitative re-
search group was to develop a technology
that could improve the firm’s capabilities
in two critical areas: diversification of in-
vestment styles and control of the process
of constructing portfolios and trades. An
investment style represents a particular in-
vestment philosophy; for example, a value
investment style attempts to predict secu-
rity returns using value-related character-
istics, such as price-to-book or price-to-
earnings ratios. To implement a particular
investment style to forecast security re-
turns, firms use multivariate linear and
nonlinear regression models, called multi-
factor models, that have the characteristics
of the particular investment style as inde-
pendent variables. GMO has made an on-
going effort to diversify investment style,
but it now needed a technology that could
support a large-scale and comprehensive
multiple-investment-style process. Multi-
ple investment styles have been discussed
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in the financial literature and implemented
at some other quantitative investment
firms. While general multifactor models
do provide diversification compared to
single-factor models, there typically is no
clear relationship between the perfor-
mance of the individual factors in a multi-
factor model and the performance of a
composite portfolio constructed using the
model. In the worst case, for example, the
return of the composite portfolio can be
lower than the return of the worst per-
forming portfolio constructed using a sin-
gle factor. This is certainly not the type of
diversification that a client would find
acceptable.

Large clients, in fact, typically divide
their funds within a given asset class (US
stocks, for example) among at least several
investment managers who have distinct
investment styles. This ensures that the
composite investment result will be a lin-
ear combination of the underlying invest-
ment styles. In this framework, the ex-ante
and ex-post composite mean return is a
simple weighted average of the ex-ante
and ex-post composite mean returns of the
individual managers. The ex-ante risk of
the composite fund, as represented by the
ex-ante variance of the composite return,
is always less than the risk of the average
manager.

Clients generally accept this linear di-
versification framework, and the GMO
quantitative group uses it to provide this
style of diversification within individual
funds. It does this by partitioning portfo-
lios into distinct subportfolios, each with a
distinct investment style. As an example,
the US Core Fund, a stock fund consisting
of large US companies, uses four subport-

folios: a value, a momentum, a neglect,
and a cash-flow subportfolio. As another
example, in the International Core Fund, a
stock fund consisting of large international
companies, GMO uses two to five invest-
ment styles in each country that work best
in that country, based on simulation and
actual investment results. The combina-
tions of a country and an investment style
make up 50 distinct subportfolios, each of
which represents an average of only two
percent of the total. The whole process
leads to vast diversification as well as to
decreased transaction costs because the
subportfolios cross with each other before
trading in the market. This benefit is not
present in the traditional investment
framework, in which a client uses distinct
external managers.

The GMO quantitative group follows
the industry practice of constructing port-
folios using quadratic optimization. Opti-
mizing multiple subportfolios simulta-
neously is not a problem that has been
addressed by others. This type of optimi-
zation presents the technical challenge of
increasing the dimension of the problem
by a factor roughly equal to the number of
subportfolios, since, in general, each sub-
portfolio can own any of the securities that
the total portfolio can own. In the Interna-
tional Core portfolio, for example, there
are 50 distinct subportfolios, which in-
creases the dimension of the problem
substantially.

The most difficult technical requirement
we faced was a practical limit on the num-
ber of securities a composite portfolio
could hold. The problem was most acute
for GMO’s large international equity port-
folios. Increasing diversification into



GRANTHAM, MAYO, VAN OTTERLOO AND COMPANY

January–February 1999 53

nonvalue-based subportfolios was produc-
ing composite portfolios that contained
1,000 to 1,500 different securities. Industry
norms for comparable international port-
folios are closer to 200 securities. This was
producing problems in three critical areas:
(1) Client confidence was eroding. The
confluence of disappointing returns along
with an apparently never-ending increase
in the number of securities in GMO’s port-
folios was leading clients to believe that
the quantitative group was gradually los-
ing control of the investment process. Sev-
eral key clients were threatening to leave
the firm.
(2) Operational complexity was straining
the capacities of the trading, settlements,
and accounting groups. Portfolios with
thousands of securities produced trade
lists with many thousands of trading tick-
ets to be executed, settled, and accounted
for in markets around the world.
(3) Concern regarding high operational
costs was widespread. Ever-increasing op-
erational costs, such as ticket charges and
custodial costs, were of increasing concern
to both GMO top managers and to many
clients, since both shared the costs.

The technology will have a
dramatic impact on the
investment returns of the
entire quantitative group.

A simple way to reduce the number of
names in a portfolio is to add a postpro-
cessing step to the quadratic optimization
of the portfolio. A postprocessing proce-
dure that eliminates both security posi-
tions and security trades smaller than

some threshold can reduce the number of
positions and trade tickets to any desired
level. For two reasons, this approach was
and continues to be infeasible at GMO:
First, small positions in a portfolio tend to
be positions in securities with small mar-
ket capitalization. Accompanying the
underperformance of value investing was
the underperformance of small-market-
capitalization stocks around the world.
Statistical research at GMO has demon-
strated that small-market-capitalization
stocks have underperformed. Their result-
ing undervaluation has led GMO to the
strategic forecast that small stocks will
outperform large stocks over the next sev-
eral years. A procedure that tends to elim-
inate small-market-capitalization stocks is
clearly unacceptable in this environment.

The other serious drawback of this post-
processing approach is a problem in all
market environments: decreased control
over the portfolio-construction and trade-
creation process. Postprocessing that elimi-
nates hundreds of positions will interfere
substantially with optimization objectives
and constraints on such key variables as
expected returns, risk, subportfolio alloca-
tions, and transaction costs. Although cli-
ents might not care about globally optimal
versus multiple-step portfolio construc-
tion, they do demand complete control
and accountability from GMO.

In addition to these serious issues for
existing portfolios, in 1996 GMO wanted
to prepare to take advantage of the grow-
ing opportunity in small-market-
capitalization stocks by developing and
simulating a portfolio-construction process
for a series of small-market-capitalization
stock funds. Preliminary results for even a
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single country (US) small-market-
capitalization stock fund showed that
GMO’s existing multiple-subportfolio pro-
cess was going to produce composite port-
folios with more than 1,500 securities. In
light of the above discussion, this was not
going to be acceptable. It was clear that
GMO had to develop a global optimiza-
tion method that could jointly optimize
multiple subportfolios and control the
number of positions and trades in the
composite portfolio. Since the number of
positions and trades in the composite port-
folio is an inherently integer quantity, we
decided that we would use mixed-integer-
programming methods to globally opti-
mize the portfolio.
The Mixed-Integer-Programming
Approach

We first consider a single portfolio,
which is rebalanced monthly. Let w0 4

(w0(1), w0(2),. . ., w0(N)) be the current
portfolio, where w0(i) is the fraction of the
portfolio invested in stock i 4 1,. . ., N. Let
wt 4 (wt(1), wt(2),. . ., wt(N)) be the target
portfolio, that is, the portfolio that it is de-
sirable to own after rebalancing. In some
funds, in which we applied the mixed-
integer-programming methods, this target
portfolio is constructed using quadratic
optimization techniques. In other funds,
the weight wt(i) for stock i in the target
portfolio is a closed-form expression of the
predicted return a(i) and the market capi-
talization of stock i.

The objective is to decide the final port-
folio wf 4 (wf (1), wf(2),. . ., wf(N)) that has
the following characteristics: (1) closeness
to the target portfolio, (2) exposure to dif-
ferent economic sectors close to that of the
target portfolio, (3) a small number of

names, (4) a small number of transactions,
(5) high return, (6) high liquidity, and (7)
low transaction costs.
(1) Given that the target portfolio wt was
selected taking into account several factors
(trade-offs in risk, return, and liquidity), it
is desirable for the portfolio wf to be as
close as possible to wt. This requirement is
captured by a term

N

|w (i) 1 w (i)|o f t
i41

in the objective function.
(2) It is desirable that the exposure to dif-
ferent sectors in the economy between the
target and final portfolios be as close as
possible. Examples of sectors include utili-
ties and financial firms. This requirement
is captured by a term

K N

k (s)| M (i)(w (i) 1 w (i))|,o sec o s f t
s41 i41

in the objective, where Ms(i) is a 0/1 index
denoting membership of stock i in sector s,
and ksec(s) is a user-specified penalty for
sector s that captures the importance of
the requirement that the difference in sec-
tor exposure between the final and the tar-
get portfolios be small.
(3) It is desirable to have a portfolio with a
small number of names. For this reason
we define

1, if w (i) . 0,fy (i) 4names 50, if w (i) 4 0.f

This requirement is captured by a term

N

k y (i)names o names
i41

in the objective, where knames is a user-
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Figure 1: The illiquidity function.

specified penalty that captures the impor-
tance of the requirement that the number
of names in the portfolio be small.
(4) It is desirable to have a portfolio with a
small number of transactions. For this rea-
son we define

1, if |w (i) 1 w (i)| . 0,f 0y (i) 4tickets 50, if |w (i) 1 w (i)| 4 0.f 0

A transaction is made and therefore a
trading ticket is written if there is a differ-
ence between the current and the final
portfolio. This requirement is captured by
a term

N

k y (i)tickets o tickets
i41

in the objective, where ktickets is a user-
specified penalty that captures the impor-
tance of the requirement that the number
of tickets written be small.
(5) It is desirable to have a final portfolio
with high return. This is captured by a
term

N

1k a(i)w (i),a o f
i41

where a(i) is the expected return of stock i,
and ka is a user-specified penalty that cap-
tures the importance of the requirement
that the return of the portfolio be high.
The reason for the negative sign is that the
overall objective is minimization.
(6) It is desirable to have a portfolio with
high liquidity or equivalently with low
illiquidity. In particular, as the position in
a stock increases, it is harder and thus
more expensive to trade it. Thus, the illi-
quidity of stock i is captured by a piece-
wise linear convex function flq(i, wf(i)) de-
picted in Figure 1.

For every stock i there is an illiquidity in-
dex lq(i), such that the illiquidity function
is modeled as

flq(i, x) 4

ls(1, i)x, 0 # x # lq(i),
ls(2, i)(x 1 lq(i))

` ls(1, i)lq(i), lq(i) # x # 2•lq(i),
ls(3, i)(x 1 2•lq(i))5
` ls(2, i)2•lq(i), 2•lq(i) # x # 4•lq(i).

The liquidity consideration is captured by
a term

N

k f (i, w (i)),illiquidity o lq f
i41

where killiquidity is a user-specified penalty
that captures the importance of the re-
quirement that the illiquidity of the port-
folio be low.
(7) It is desirable to minimize total transac-
tion costs. In particular, as the trading po-
sition increases relative to the daily vol-
ume of a stock, transaction costs become
higher because portfolio trades have an
impact in the market. Clearly, as the
traded amount increases, the price impact
is greater, and thus the effect increases.
The transaction cost from trading stock i is
captured by a piecewise linear convex
function ftc(i, |wf(i) 1 w0(i)|) depicted in
Figure 2.

For every stock i, there is a volume in-
dex vol(i), such that the transaction-cost
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Figure 2: The transaction cost function.

function is modeled as

f (i, x) 4tc

cs(1, i)x, 0 # x # 0.1•vol(i),
cs(2, i)(x 1 0.1•vol(i))

` cs(1, i)0.1•vol(i), 0.1•vol(i) # x # 0.3•vol(i),
cs(3, i)(x 1 0.3•vol(i))5

` cs(3, i)0.3•vol(i), 0.3•vol(i) # x # 0.5•vol(i).

The transaction-cost consideration is
captured by a term

N

k f (i,|w (i) 1 w (i)|),tc o tc f 0
i41

where ktc is a user-specified penalty that
captures the importance of the require-
ment that the transaction cost be small.

The complete formulation is presented
in the appendix. The model uses various
penalties, denoted by k, that capture the
relative importance of the various objec-
tives. We choose penalties heuristically af-
ter extensive experimentation. We run the
algorithm for a given set of penalties and
observe the performance of the portfolio
in historical simulations over approxi-
mately 20 years, reoptimizing monthly. If
we consider a characteristic of the portfo-
lio unsatisfactory, we increase its corre-
sponding penalty. We perform thousands
of runs to determine satisfactory penalties.
The Multiple-Portfolio Problem

We have also applied mixed-integer-
programming methods to a portfolio that

consists of several subportfolios indexed
by j, j 4 1,. . .,S. Let w0(i,j), wt(i,j) be the
current and target position, respectively,
of stock i in subportfolio j, i 4 1,. . ., N, j
4 1,. . ., S. The objective is to decide the fi-
nal position wf(i,j) of stock i in subportfolio
j. Clearly, the current, target, and final po-
sition of stock i in the portfolio is

S

w (i) 4 w (i,j),0 o 0
j41

S

w (i) 4 w (i,j),t o t
j 4 1

S

w (i) 4 w (i,j).f o f
j 4 1

As before the objective is to decide the
final weights wf(i,j) so that the final and
target portfolios are close, the total sector
exposure is similar, the number of names
in each subportfolio, as well as the total
portfolio, is small, the total number of
trading tickets written is small, the total
return of the portfolio and its liquidity are
high, and the total transaction costs are
small.

Using methodology similar to that for
the single-portfolio problem, we formu-
lated a mixed-integer-programming
model. One of the major advantages of
constructing a portfolio that consists of
several subportfolios that represent differ-
ent investment philosophies is that, in op-
timizing the portfolio, one can reduce the
transaction costs by having the subportfo-
lios trade with each other and thus avoid
incurring transaction costs for the fund.
This is a major attraction for clients. They
have the benefit of diversification among
different investment philosophies, while
having global control of transaction costs.
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Portfolio
Average size
rows/columns

Maximum size
rows/columns Problems

CPU/problem
(minutes)

SMALG 1,084/8,884 NA 1 1.4
SMALV 1,592/11,153 NA 1 1.8
UK 598/4,982 864/7,411 241 0.4
Small growth 5,434/41,969 6,546/51,532 181 4.0

Table 1: The table shows the sizes of four problems and the CPU times needed to solve each
problem. In these four examples of portfolios run using the mixed-integer-programming
model, the results for the first two portfolios SMALG (small growth) and SMALV (small value)
are from an actual run of the mixed-integer-programming model. The results for the UK portfo-
lio (Figure 3) and the small growth portfolio (Figure 5) represent historical simulations over 241
and 181 months, respectively.

Implementation
We implemented the mixed-integer-

programming model in FORTRAN using
CPLEX 4.0 as the underlying mixed-
integer-programming solver. The model
runs on a Digital Equipment Corp. (DEC)
Alpha cluster running OPENVMS and
Dell PentiumPRO PC systems running
Microsoft Windows NT 4.0 with an x-
windows, telnet, nfs, and ftp connection to
the local office Alpha cluster. The Alpha
cluster component used for optimization is
an Alpha Server 4100 5/466, including
four 466 MHz CPUs (acting indepen-
dently, not in parallel) and two GB of
main memory. External storage is well
over 150 GB.

The software optimization engine
CPLEX 4.0 is available through the CPLEX
division of ILOG. In particular, CPLEX
provides a callable library of routines. The
callable library is at the heart of an appli-
cation we call TRGTOPT (target optimiza-
tion), which consists of approximately
10,000 lines of FORTRAN 90 code written
at GMO. TRGTOPT is command-line
driven, accepting as input a text file that
describes the specifics of the problem to be
solved. Once the input file is parsed into a

dynamic data structure, TRGTOPT queries
the database for target-portfolio and sub-
portfolio information and sets up the
problem to be solved by CPLEX.

We have made many improvements to
the implementation and problem formula-
tion since the initial implementation in
October 1996. At that time, when we were
trying to solve the single-portfolio prob-
lem (without any subportfolios) with ap-
proximately 1,500 securities (the number
of variables is typically equal to eight to
10 times the number of securities), it could
take as long as 15 hours of CPU time to
solve a single problem. This was consid-
ered unsatisfactory, as GMO’s desire was
to solve many problems for simulation
purposes. Typically, before introducing a
new method in the portfolio-construction
process, the quantitative group attempts to
simulate this new method historically.
During the fall and winter months of 1996,
we tried to decrease these running times
substantially so that a simulation over 20
years that rebalances the portfolio monthly
(240 problems to be solved) was feasible
(see Table 1).

After extensive experimentation with
parameters associated with CPLEX-like
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node and variable selection strategies, set-
ting branching priorities, and adjusting the
stopping criteria, we were able to improve
the solution times considerably. We real-
ized further improvements by strengthen-
ing the formulation and thus improving
the linear-programming relaxation
bounds. The most important factors that
contributed to the improvement of the
running times are the following:
(1) We strengthened the formulation to
improve the relaxation bounds (appendix).
(2) We used the structure of the problem
to set node-selection and branching priori-
ties. Given the target vector, it is unlikely
that the largest positions in the target
portfolio will be eliminated, while it is
more likely that the smallest positions will
be eliminated. So, we first select to branch
on the variables that correspond to the
largest positions in the target portfolio. Re-
garding branching priorities, for the larg-
est positions, we branch first on the option
to keep the position, while for the smallest
positions, we branch first on the option to
eliminate the position.
(3) We experimented with the various pa-
rameters of CPLEX and found that the
stopping criterion and the suboptimality
allowed had an effect on the running time.

We now routinely solve a 1,500-security
problem in a few minutes, which enables
us to set up simulations that run overnight
solving hundreds of problems.
Results

Prior to implementing the mixed-
integer-programming approach, we per-
formed extensive historical simulations.
We used these to convince top manage-
ment at GMO of the effectiveness of the
method. We performed two such simula-

tions recently that show that our methods
can solve truly large problems and can
lead to significant improvements in per-
formance. These two examples also show
that the mixed-integer-programming algo-
rithm can be used in either tracking mode
or performance-enhancing mode.
Historical Simulation of the UK Portfolio

The first example is of a United King-
dom (UK) portfolio that is the weighted
sum of three subportfolios. The three sub-
portfolios reflect independent models for
adding value to the UK market. In this ex-
ample, we chose the penalties so that the
optimized portfolio tracks the perfor-
mance of the target portfolio as well as the
performance of the target subportfolios
but does it with many fewer securities. We
refer to this mode of running the algo-
rithm as tracking mode. Figures 3 and 4
show the performance of the target portfo-
lio and the optimized portfolio relative to
the benchmark (in this case, the MSCIP
UK index). The scale reflects a cumulative
benchmark multiple, so that a value of 1.7
(the approximate value in 1997) means
that cumulative portfolio performance is
1.7 times that of the benchmark. Since the
benchmark returned 2,000 percent (in
round numbers) cumulatively (16.4 per-
cent annually) over the 20-year period, the
implication is that the portfolio returned
3,400 percent cumulatively (19.5 percent
annually). The optimized portfolio tracks
the target portfolio very closely. The aver-
age number of securities in the optimized
portfolio is approximately 55 percent
(80/146) that of the target portfolio, while
the average number of tickets was reduced
by 60 percent in the optimized portfolio.
The average monthly turnover is virtually
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Figure 3: The figure shows an example of running the method in the tracking mode. It com-
pares the simulated performance of the target and optimized United Kingdom portfolio during
the period 1977–1997. The portfolio consists of three subportfolios. The first panel shows the
ratio of the return of each of the two portfolios to the return of the benchmark. The second and
third panels show the number of securities and number of trading tickets in both the target
and the optimized portfolios. The fourth panel shows the turnover for both portfolios.
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Figure 4: The figure compares the simulated performance of the target and optimized subport-
folios for the UK portfolio during the period 1977–1997. The three subportfolios use a momen-
tum, a price to fair value, and a price to earnings model, respectively.
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identical (the turnover spikes are due to a
subportfolio that is traded only once per
year). Figure 4 shows that the optimized
three subportfolios track the target sub-
portfolios very closely as well.
Historical Simulation of the Small-
Growth US Portfolio

The second example is of a US portfolio
consisting of growth stocks with small
market capitalization (Figures 5 and 6). It
shows that the optimized portfolio actu-
ally outperforms the target portfolio sig-
nificantly. The optimized portfolio over
the period 1982 through 1997 has cumula-
tive performance twice that of the bench-
mark, while the target portfolio has a per-
formance 1.6 times that of the benchmark
(Figure 5). The other characteristics are
similar to the previous example: a 55-per-
cent reduction in the number of names, an
80-percent reduction in the number of
tickets, and virtually identical turnover.
We have achieved this improvement in
performance by adjusting the various pen-
alties present in the objective function. We
refer to this mode of running the algo-
rithm as performance-enhancing mode.
While we have seen these results only in
simulation, they have been instrumental in
convincing GMO top management (a) to
apply this methodology extensively
throughout the firm and (b) to launch new
funds using mixed-integer-programming
methods.
Implemented Results

We have applied the mixed-integer-
programming methodology to portfolios
with a total market value of $ 8.158 billion
in the period October 1996 to January 1997
(Table 2). We achieved an average reduc-
tion of 48.7 percent in the number of

names and an average reduction of 79.3
percent in the number of trading tickets.
Impact

The mixed-integer-programming devel-
opment has had a major impact on GMO’s
quantitative group in many areas. In gen-
eral, this technology has contributed both
to keeping GMO’s existing client business
and to making possible new growth op-
portunities. In GMO’s international portfo-
lios, the number of positions has de-
creased by 40 to 65 percent, and the
number of trades requiring processing has
decreased by 75 to 85 percent. GMO’s cli-
ents understand that GMO has accom-
plished this without compromising its in-
vestment goals. In one $400 million
international separate account, reducing
the number of positions from 1,300 to 400
to 500 was a condition for keeping the ac-
count. Our mixed-integer-programming
process achieved this goal, and accom-
plished the reduction with careful control
of turnover and transaction costs accord-
ing to a timetable the client specified.

GMO launched two US small-market-
capitalization funds successfully at the end
of 1996 using the mixed-integer-
programming portfolio-construction pro-
cess. The investment returns of the funds
and the control over the portfolio and
trading process have met or exceeded our
expectations. A year after launch, the
funds have a value of $1.1 billion, a clear
success for the quantitative group and the
mixed-integer-programming technology.

Reductions in operational and trading
costs have also met our expectations.
GMO has realized annual savings of about
$4 million from the sharp drop in trading
tickets in the international and small stock
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Figure 5: The figure shows an example of running the method in the performance-enhancing
mode. It compares the simulated performance of the target and optimized US small-growth
portfolio during the period 1982–1997. The portfolio consists of three subportfolios. The first
panel shows the ratio of the return of each of the two portfolios to the return of the benchmark.
The second and third panels show the number of securities and number of trading tickets in
both the target and the optimized portfolios. The fourth panel shows the turnover for both
portfolios.
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Figure 6: The figure compares the simulated performance of the target and optimized subport-
folios for the US small-growth portfolio during the period 1982–1997. The three subportfolios
use an earnings surprise, earnings momentum, and price momentum model, respectively.
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Portfolio
name

Market value
($ billion)

No. names
before

No. names
after

% names
reduction

No. tickets
before

No. tickets
after

% tickets
reduction

ISF 4,308 1,285 772 39.9 764 186 75.7
CHIC 651 1,172 699 40.4 613 134 78.1
GTEI 369 1,061 626 41.0 552 123 77.7
IMFQ 387 1,003 606 39.6 576 127 78.0
IQNT 475 1,066 467 56.2 652 140 78.5
SCAP 251 893 516 42.2 571 137 76.0
AMER 288 1,188 417 64.9 553 102 81.6
JSF 212 373 222 40.5 231 49 78.8
SMALG 386 986 394 60.0 917 156 83.0
SMALV 743 1,451 579 60.1 1298 206 84.1
QVF 88 866 424 51.0 671 129 80.8

Table 2: The quantitative portfolios constructed using the mixed-integer-programming ap-
proach show improvements in market value and reductions in the number of names and the
number of tickets.

US funds. It will achieve additional sav-
ings of the same order of magnitude when
it applies the mixed-integer-programming
methods to the large stock US funds. Al-
though GMO has achieved no savings in
variable costs by reducing the number of
positions in the international and small
stock US funds, it has avoided potentially
large increases in annual rates by charging
fixed prices for its custodial contracts.

Because of the internal efficiencies
achieved, the firm has not had to add new
trading-operations personnel in the last
two years, trade instruction and settlement
errors in the international area have de-
clined, and stress in trading and trading-
related areas within the firm shows a
marked reduction. The ability to optimize
the large international trades has given us
the ability to better control frictional trans-
action costs. These are the costs incurred
by large investors as security prices move
away from the prices specified in the buy
and sell orders. When these costs are
poorly controlled and therefore large, they

can drastically decrease total investment
returns. The international trading group
has reported a decrease in the difficulty
and cost of executing international trades,
a decrease that is difficult to quantify.

Since its development in 1996, we have
used the mixed-integer technology in
tracking mode, with the goal of tracking
as closely as possible target portfolios and
subportfolios subject to control over num-
ber of positions, number of trades, and
transaction costs. Improvements in pro-
cessing times for the mixed-integer-
programming algorithm have enabled us
to explore goals more complex than sim-
ple tracking. One important result has
come from simulations that relax the
tracking objective to improve the ex-ante
portfolio return. We have examined this
approach in detail for simulations of the
US small stock growth fund and find that
it enhances simulated returns of the fund
without violating other constraints.

This free lunch comes from the remark-
able ability of the global optimization of
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multiple subportfolios to sharply increase
turnover at the subportfolio level without
increasing total portfolio turnover. Increas-
ing subportfolio turnover from 90 percent
per year to 200 percent per year greatly
enhances subportfolio returns. GMO’s lin-
ear framework guarantees that portfolio
returns will be enhanced proportionately
to the weight of each subportfolio because
of GMO’s linear framework, and with the
global optimization effectively arranging
crossing trades between the subportfolios,
total portfolio turnover is held to target
levels. If this result continues to hold for
funds other than the small stock growth
fund, and we expect that it will, this use of
the technology will have a dramatic im-
pact on the future investment returns and
success of the entire quantitative group at
GMO.
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APPENDIX
A Complete Formulation of a Single-
Portfolio Problem

The complete formulation of the single-
portfolio problem is presented below. In
addition to the variables wf(i), ynames(i),
ytickets(i) the formulation uses auxiliary
variables y(i), f(i), x(s) to model |wf(i) 1
wt(i)|, |wf(i) 1 w0(i)|, and N|(wi41

Ms(i)(wf(i) 1 wt(i))|, respectively. It also
uses the auxiliary variables x1(i), x2(i), x3(i)
to model the different pieces of the piece-
wise linear and convex illiquidity function,
and the auxiliary variables z1(i), z2(i), z3(i)
to model the different pieces of the piece-
wise linear and convex transaction-cost
function.

Minimize
N K

y(i) ` k (s)x(s)o o sec
i41 i41

N

` k y (i)names o names
i41

N N

` k y (i) 1 k a(i)w (i)tickets o tickets a o f
i41 i41

N

` k (ls(1, i)x (i) ` ls(2, i)x (i)illiquidity o 1 2
i41

` ls(3, i)x (i))3
N

` k (cs(1, i)z (i) ` cs(2, i)z (i)tc o 1 2
i41

` cs(3, i)z (i))3

subject to
N

w (i) 4 1,o f
i41

wf(i) 1wt(i) # y(i), ∀i
1 (wf(i) 1 wt(i)) # y(i), ∀i
wf(i) 1 w0(i) # f(i), ∀i
1(wf(i) 1 w0(i)) # f(i), ∀i

N

x(s) > M (i)(w (i) 1 w (i)), ∀so s f t
i41

N

x(s) > 1 M (i)(w (i) 1 w (i)), ∀So s f t
i41

wf(i) # ynames(i), ∀i
f(i) # ytickets(i), ∀i
wf(i) 4 x1(i) ` x2(i) ` x3(i), ∀i
f(i) 4 z1(i) ` z2(i) ` z3(i), ∀i
0 # x1(i) # lq(i), ∀i
0 # x2(i) # lq(i), ∀i
0 # x3(i) # 2•lq(i), ∀i
0 # z1(i) # 0.1•vol(i), ∀i
0 # z2(i) # 0.2•vol(i), ∀i
0 # z3(i) # 0.2•vol(i), ∀i
y(i), wf(i), f(i) > 0, ∀i
x(s) > 0, ∀s
ynames(i), ytickets(i) [ {0, 1}, ∀i.
Formulation Enhancements

The constraint wf(i) # ynames(i) has been
used in the formulation to relate the con-
tinuous and the discrete variables. In prac-
tice, however, no final weight is expected
to be larger than a threshold, say five per-
cent. Moreover, as the market capitaliza-
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tion of a stock decreases, this threshold
will be smaller. For this reason, we
strengthen the constraint wf(i) # ynames(i)
by replacing it by the constraint:

w (i) # a w y (i),f i max names

where wmax is the maximum weight of a
stock in the portfolio, and ai are constants
that depend on the market capitalization
of the stock. The resulting relaxation is
stronger than the one outlined here.
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Jeremy Grantham, Founding Member,
Grantham, Mayo, Van Otterloo and Com-
pany LLC, 40 Rowes Wharf, Boston,
Massachusetts 02110, writes: “Grantham,
Mayo, Van Otterloo and Company LLC
(GMO) is an investment management firm
founded in 1977. GMO currently employs
170 people worldwide and manages over
$26 billion for 653 clients. We have been
taking an integer programming approach
to the construction of 11 quantitatively
managed portfolio representing over $8
billion in assets since October 1996.

“Our portfolio construction methodol-
ogy, employing multiple investment styles
with diversification over time, lends itself
to creating portfolios (called ‘target’ port-
folios) that have desirable characteristics
(low turnover, high liquidity, good perfor-
mance) but contain a large number of se-
curities. One way to reduce the number of
securities would be to simply eliminate all
of the small positions. That’s typically not
a bad first approximation but small posi-
tions are usually associated with smaller
capitalization securities which we periodi-

cally believe will outperform the larger
capitalization securities and therefore
want to maintain our small capitalization
exposure, as we do today. Another moti-
vation for an integer programming solu-
tion is to reduce the costs associated with
trading the portfolio. We could account
for frictional and brokerage costs in a qua-
dratic programming problem but we also
need to be able to control the number of
tickets we have to write to trade the
portfolio.

“So the optimization problem, and our
motivation for pursuing integer program-
ming methods, is to construct a portfolio
that is ‘close’ (in terms of sector and secu-
rity exposure) to the target portfolio, has
about the same liquidity, turnover, and ex-
pected return, controls frictional costs, and
does so with fewer names and requires
fewer tickets.

“The benefits of employing an integer
optimization framework are significant.
First, the number of securities has been re-
duced by an average of 40–60 percent with
only a marginal decrease in liquidity while
maintaining the turnover, performance,
and sector exposures of the target portfo-
lio. Second, the costs of trading the portfo-
lio have decreased by at least $4 million
due to a 75–85 percent reduction in the
number of tickets written to trade it and
the ability to have a cost model in the ob-
jective function.”


